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Restricting space to low dimensions can cause deviations from the mean-field 
behavior in certain statistical systems. We investigate, both numerically and 
analytically, the behavior of the chemical reaction A + 2X ~- 3X in one and two 
dimensions. In one dimension, we produce exact results showing that the 
trimolecular reaction system stabilizes in a nonequilibrium, locally frozen, 
asymptotic state in which the ratio r of A to X particles is a constant number, 
r=0.38, quite different from the mean-field ratio, rMv= 1. The same tri- 
molecular model, however, reaches the mean-field limit in two dimensions. In 
contrast, the bimolecular chemical reaction A + X ~ 2X is shown to agree with 
the mean-field predictions in all dimensions. For both models, we show that the 
adoption of certain types of transition rules in the laws of evolution can lead to 
oscillatory steady states. 

KEY WORDS: Low-dimensional systems; Markov processes; mean-field 
theory; reaction-diffusion systems. 

1. I N T R O D U C T I O N  

It is widely accepted that  the d imensional i ty  of the space in which statisti- 
cal systems are embedded plays an impor tan t  role in the evolut ion of their 
macroscopic properties. A considerable a m o u n t  of work in areas such as 
spin systems, ca) r a n d o m  walks, ~2) aggregation problems, ~3) chemical reac- 

tions, (4) etc., has been devoted to the search for the role of dimensional i ty  

in the dynamica l  evolution.  For  all these systems it has been shown that  
there exists a critical value d c above which the general features of the 
systems are independent  of their dimensionali ty.  However, below this 

critical d imens ion  de, the macroscopic  (and statistical) behavior  becomes 
highly specific. 
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Spatial constraints play an important role in the dynamics of chemical 
reactions. (4) The atoms participating in the process usually have a finite 
range of interaction and so they can only react with a finite number of 
other atoms in their immediate neighborhood. If the space where the reac- 
tion takes place has low dimensionality, the number of neighbors as well 
as the mobility of the atoms are low. Consequently, some of the reactions 
take place with difficulty or are even forbidden. On the other hand, a high 
space dimensionality permits higher mobility, so each individual atom 
effectively can reach and react with all the other atoms in the system. It 
may thus be expected that for certain reactions, the phenomenological 
mean-field predictions will fail for sufficiently low dimensions. 

Several investigators ~5) have recently reported results on the failure of 
classical reaction kinetics in low-dimensional systems and fractal sets, prin- 
cipally as a result of the formation of macroscopic clusters. In the present 
paper we introduce a more microscopic modeling of the reaction process 
itself. We also focus more specifically on the thermodynamic aspects in 
connection with the ergodicity and mixing properties and the existence of 
an equilibrium state. Two examples of chemical reactions manifesting the 
role of low dimensionality in this respect are considered. In Section 2 we 
study the trimolecular chemical reaction A + 2X ~ 3X, which eventually 
amounts to the Schl6gl model without input/4'6i We first consider a one- 
dimensional lattice filled up with X particles, and show, both analytically 
and numerically, that the steady-state behavior is distinctly different from 
the phenomenological behavior apparent in higher dimensions. In 
Section 3, we show that if one adopts a particular set of transition rules in 
the laws of evolution of the trimolecular reaction system, the steady state 
becomes oscillatory with period 2. In Section 4, we study the bimolecular 
chemical reaction A + X ~ 2X and show that already in one dimension this 
reaction shows mean-field behavior in the steady state. Comparison of the 
bimolecular and trimolecular reaction models shows that the critical 
dimension dc is not universal, but depends on the particular type of the 
process. In Section 5, we discuss the effects of random initial conditions in 
the formation of the asymptotic state. Finally, we conclude by discussing 
other features of reactions in one and two dimensions, such as ergodicity, 
the role of diffusion, and higher-order processes. 

2. THE TRIMOLECULAR REACTION MODEL A+2X~----3X 

We consider the trimolecular reaction model ~4'6) 

kl 
A + 2 X ,  "3X (1) 

kz 
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We stipulate that particles of type A, characterized by a "color" variable 
denoted for simplicity also by A, can change their color whenever they feel 
the presence of two particles of type X. Similarly, particles of type X can 
change their color, turning into A particles, when they are in the range of 
interaction of two other X particles. In (1), kl and k2 represent the forward 
and backward reaction rates, respectively. 

This reaction model is easy to realize in one dimension. The simplest 
version consists of particles A and X occupying the sites of a one-dimen- 
sional lattice, one particle per lattice site, with either periodic or fixed 
boundary conditions. To simplify further the model, we first assume that 
there are no vacant sites on the lattice and thus diffusion of the particles 
does not take place. (We will discuss the effects of diffusion in Section 6.) 
Since real molecules behave at very short distances like hard spheres, i.e., 
they can not pass through each other, we do not allow permutations of 
neighboring particles on the lattice during the system evolution. Further- 
more, in view of the assumption that the reacting molecules have a finite 
range of interaction, we arrange the lattice constant (distance of two 
neighbor lattice sites) to be equal to the range of interaction of the reacting 
species. Under this condition, we can limit ourselves to nearest-neighbor 
interactions so that an A particle surrounded on the left and right by X 
particles can change its color, turning into an X particle. Similarly, an X 
particle "sandwiched" between two other X particles can change its color, 
turning into an A particle, l i t  is easy to visualize the A particles as having 
two active sites (~ thus needing two nearest-neighbor X particles in 
order to react and change color. A similar argument can be given for the 
X particles.] 

For the time evolution of the system, we use the Markovian assump- 
tion. To secure its validity, we choose the time step so small that only one 
reaction can happen at every time step. The algorithm works as follows: 
(1) we choose one lattice site at random, (2) if the particle on the chosen 
site is surrounded by two X particles in the immediate neighborhood, it 
changes its color; otherwise the color on the chosen site is maintained. 

It should be mentioned here that the above-defined system is not 
ergodic. For example, the uniform configuration which contains only A 
particles is obviously frozen. A necessary condition for the dynamical 
evolution of a site is the existence of X particles in the neighborhood. 
Similarly, for a random initial configuration which contains islands of A 
particles and islands of X particles, it is easy to see that the islands of A 
particles of size larger than one site will remain frozen, whereas the islands 
of X particles of size larger than two sites will give birth to A particles. It 
is thus advisable to understand first the evolution of a uniform configura- 
tion containing initially only X particles before we study the most general 
problem of random initial conditions. 
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Traditionally, in the study of chemical systems one resorts to a 
phenomenological description involving the local densities of particles A 
and X. The evolution in time of these densities A(x, t) and X(x, t), respec- 
tively, is given by (4'61 

dA(x, t )_  _k lA(x  ' t)X2(x, t)+ kzX3(x, t) (2) 
dt 

dX(x, t) 
+k~A(x, t ) f2(x ,  t ) -kzX3(x ,  t) (3) 

dt 

where k~ and k 2 denote the reaction rates in (1). Here we do not include 
the usual diffusion terms since the lattice is filled with particles that cannot 
move due to the hard-core potential. For equal reaction rates kl = k2, Eqs. 
(2) and (3) admit in the long-time limit an equilibrium steady state in 
which the densities of the two species are equal, A(x, t) = X(x, t). [There is 
also the trivial solution X(x, t )=  0, which is valid if we start with an initial 
configuration of only A particles.] The phenomenological description is 
independent of the dimensionality of space and coincides with the mean- 
field description. However, as we explained earlier, spatial effects which 
could change severely the behavior of the chemical system are neglected in 
the mean-field approach. In the remainder of this section, we show that the 
spatial restriction in one dimension leads the chemical reaction (1) to a 
nonequilibrium locally frozen state (A(x, t)) v a (X(x, t)) even in the case 
of equal reaction rates k~ = k 2. 

A one-dimensional system initially filled up with X particles can make 
transitions only to a certain number of states permitted by the given 
reaction rules and the requirement that at each step only one reaction 
can happen (Markovian assumption). The number of distinct allowed 
configurations also depends on the size of the system L. In the following 
analysis we will consider fixed boundary conditions mainly for two reasons: 
(a) to facilitate the calculations, since fixed boundary conditions produce 
fewer allowed configurations and (b) after the generalization to random 
initial conditions the islands of X particles will be intersected by islands of 
A particles and will thus be subjected to fixed boundaries. 

As an example, for a system of size L--5  with fixed boundary 
conditions, the only allowed states are 

X X X X X 

X A X X X 

X X A X X 

X X X A X 

X A X A X 
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In particular, it is obvious that states with two or more A particles next to 
each other, such as X A A X X, are not allowed by the dynamics. This 
suggests that the one-dimensional system in addition to being nonmixing is 
also nonergodic in the full state space of 2 r -  2 possible permutations of A 
and X. 

The dynamics of' the transitions between the allowed states of the 
system is described by the transition matrix T. The element T/j represents 
the probability of transition from the state i to the state j. The mechanism 
for obtaining the elements of the transition matrix for a system of size L is 
the following: 

1. Choose with probability 1 / (L-2 )  any of the L - 2  intermediate 
sites of the chain, excluding the edges. 

2. If the chosen site is surrounded by two X particles, a transition to 
a state j takes place and so the matrix element is T~ = 1/(L-2) .  

3. When all possible transitions of the state i have been calculated 
the probability of no transition, represented by the element T,i, 
can be calculated as Tii = 1--Zallt  .... itions ( 1 / ( L -  2)). 

The transition matrix T is a doubly stochastic matrix with the sum of rows 
and columns equal to 1 and for the case L - - 5  studied earlier takes the 

t 0 1/3 1/3 1/3 0 / 
1/3 1/3 0 0 1/3 

T =  | 1/3 0 2/3 0 0 (4) 
/ 

\1~3  0 0 1/3 1/3] 
1/3 0 1/3 1 / 3 /  

form 

The general form of the transition matrix T for arbitrary lattice size L 
is rather complicated, but here we give some general characteristics. F o r  
every state that has at least one particle A we have the possibility to stay 
at the same state. So all the diagonal elements, except the (1, 1) element, 
will be nonzero. From every state with nA particles A we can have a tran- 
sition to states with nA_+ 1 particles A. Because of that, the T matrix will 
have a block form with blocks of zero and nonzero elements. The blocks 
in general need not be square. On each line all the nonzero elements will 
have equal size except the diagonal element, but the sum of all elements on 
every line must be equal to one since the total probability is conserved in 
time. These general characteristics do not allow us to predict the exact 
form of the matrix for any value of the system size L, but they are sufficient 
to determine the behavior of the steady state. 
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The Frobenius theorem warrants that any stochastic matrix has a 
maximum eigenvalue equal to 1, which corresponds to the steady state of 
the system. The corresponding eigenvector has the form (1, 1, 1, 1, 1), 
indicating that all the particular states contribute with the same weight in 
the formation of the steady state. From this point of view the system is 
ergodic in its allowed state space. As we show presently, this ergodicity 
condition does not warrant that at the steady state (A(x, t))= (X(x, t)). 

Let us denote by Mr(n) the number of different ways of putting n par- 
ticles A in a 1D lattice of size L. If all possible configurations were allowed, 
then ML(n) would be equal to the combinatorial factor (~). However, 
starting from the uniform X configuration and because of the Markovian 
assumption, we must leave one X particle between two A particles in the 
lattice. This restriction indicates that at least ( n - 1 )  sites on the lattice 
cannot be occupied by A particles. If we also assume fixed boundary 
conditions, there are only L -  ( n -  1 ) -  2 sites that can be filled by A 
particles. So the average number of A particles in a chain of size L with 
fixed boundary conditions can be estimated as 

(A)L-- [(LzI)/2, 17 (L--'--II/[(L-I)/2] (5) 
n = 0  gl I 1  n 0 

and similarly for (X>L. We have calculated numerically the of ratio 
r = ( A ) L / ( X > c  as a function of L from Eq. (5). Figure 1 shows r as a 
function of L. As L --* o% the average ratio of A to X particles approaches 
a value close to 0.38. This is quite different from the mean-field value 
F M F  = 1. 

To confirm this argument, we performed a direct simulation of the 
trimolecular reaction on a 1D lattice, following the algorithm given earlier. 

0 . s  ! . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  

0.46@ + 

0.34 - 
1 

0.3 I ~ @ 
1000  2000  3 0 0 0  

L 

Fig. 1. Numerical evaluation of the ratio r=(A)/(X)  according to Eq.(5). As the 
system size L increases, the ratio r reaches an asymptotic value in the region of 
, .  = (s-,/~)/(s + , / ~ ) .  

0.42 

- 0.38 
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In Fig. 2 we plot the ratio r as a function of time. We see that as time goes 
to infinity the trimolecular reaction approaches a steady state in which the 
ratio r takes the value r = 0.38 4-0.02. This result agrees with our previous 
argument. 

We now give a rigorous derivation of the asymptotic value of r based 
on the properties of the quantity ML(n). It is easy to see that this quantity 
has the property 

ML(n) = ML_  ,(n) + ML_2(n -- 1) (6) 

Equation (6) holds because the allowed configurations containing n 
particles of color A in a chain of size L can be obtained by one of the 
following two ways: (a) either by adding one particle of color X to the left 
and of all the s i z e - ( L - 1 )  configurations with n particles of color A or (b) 
by adding the pair A-X to the left and of all the size-(L - 2) configurations 
which contain ( n -  1) A particles. By summing both sides of Eq. (6) over 
the variable n, we can find the total number of allowed configurations for 
the different lattice sizes. The number of allowed configurations of a lattice 
of size L, ML = Y,, ML(n) has the Fibonacci property, namely 

ML = ML_  l 4- M r _ 2  (7) 

Let us now introduce the generating function for the quantity ML(n), 

PL(~) = ~. Mr(n)~"  (8) 
n=O 

o. 5 -L ....... ~ - ~ T ~  ........ ! ......... I ....... I ....... t ~ ' ~  
p 

0 . 4 +  . .  . L_ 

, 
0.2 

0 4  ........ : ..... " ~  ........ f ........ ....... [ . . . . .  
1 1 0 0 1 0 4 1 0 6 t 

Fig. 2. Numerical simulation of the chemical reaction A + 2X ~ 3X (no diffusion). As time 
increases, the ratio r = { A  ) / ( X )  approaches an asymptotic value in the region of 0.38 _ 0.02. 
The lattice size used in the simulation was L = 2 l~ and the initial configuration contained only 
X particles and no vacant sites. 
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Notice that the quantity of interest ( A )  can be written as ( A ) =  
P'L(4)/PL(~)]~=I and similarly for (X)  and r. By introducing the 
generating function transformation into Eq. (6), we obtain 

PL(4) = PL -  1(~) + ~PL- 2(~) (9) 

Furthermore, we introduce the winding number as 

PL(~) 
co~(4)- - -  (10) 

Pr+l (~)  

By inserting Eq. (10) into Eq. (9) and taking the asymptotic limit L ~ oe 
so that c0L(~)= coL-l(4) . . . .  , we obtain co as a function of 4 for large 
values of L, 

--1 + (1 "-I'-4~) U2 
o)(4)-- (11) 

2~ 

In terms of co the quantity of interest ( A )  can be written as 

( A ) =  P~(~) co'(~) L, L ~  (12) 
PL(~) co(4) ~ =1 

This result combined with Eq. (11) leads to the asymptotic result 

5 -  x/5 L, L ~  (13) 
( A )  - 10 

and 

( A )  5 +~55 = 0.38... (14) r =  < x ) = 5  

as expected by the numerical simulation and the argument presented 
above. 

The nonequilibrium state found in the trimolecular one-dimensional 
model is intrinsically different from the one found in open systems. (4) In an 
open chemical system the nonequilibrium steady state is caused by the 
continuous feeding of reactants. In low dimensions, however, owing to the 
conditions imposed by the geometry of the space, a nonequilibrium 
(frozen) asymptotic state is reached even in a closed system. 

As we mentioned earlier, the mean-field equations (2)-(3) fail to 
describe the low-dimensional behavior in chemical reactions. Again the 
main point missing in the mean-field description is the element of the 
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geometry. To account for the effects of the geometry, we must modify the 
mean-field equations so that the rate constants will account for the allowed 
space configurations. In a crude approximation we can say that if we 
start from a uniform X configuration, at the steady state we have equal 
probability to obtain the following four neighborhood configurations: 
CI=XXX,  C2 =AXX, C3=XAX, and C4=XXA. Other neighborhood 
configurations are not allowed. From those four configurations the ratio of 
A to X particles would then be r ' =  3/9 = 0.333. This is a very crude first 
approximation because we have neglected the shape and the structure of 
larger steady-state neighborhoods. These extra correlations that we have 
neglected will change the value of r' into the value given in Eq. (14). The 
geometry restrictions may be implemented by hand in Eqs. (2)-(3), at least 
at the steady state. For  example, the left-hand side of Eq. (2) is zero (steady 
state), when the frequency of finding neighborhood configurations C~ 
is three times smaller than the frequency of finding the other three 
neighborhood configurations. Thus, it is enough to require that k2 = 3k~ in 
Eqs. (2)-(3) in order to take into account the geometry restrictions in one 
dimension. This modification might have some sense in the steady state, 
but it is ambiguous with regard to the time-dependent behavior of the 
system. 

3. O S C I L L A T O R Y  S O L U T I O N S  

The rules governing the evolution of the trimolecular model intro- 
duced in Section 2 allowed for the possibility of no transition. Specifically, 
at every time step we choose with equal probability any site at random. 
If the particle at the chosen site is allowed to react by changing color, 
then the system changes state, whereas if transition is not favored by the 
neighbors, then the system remains at the current state. As we have seen, 
these evolution rules lead to a doubly stochastic transition matrix and 
consequently to a unique steady state. We now consider the following 
slight modification of the evolution rules. At every time step we keep track 
of the states to which a given state can evolve. We stipulate that the system 
must leave its current state, and assign equal probabilities to each allowed 
transition. This modification introduces a certain forcing in the model, 
which for this reason will be refered to as the "forced trimolecular model." 

Let us now examine the properties of the transition matrix of the 
modified trimolecular model. Since at each time step the system is forced 
to leave its current state, the number of particles A in the system will either 
increase or decrease by one unit. So the resulting state will belong to the 
ensemble of states that contain one A particle more or one less then the 
original state. This observation allows us to guess the form of the transition 
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matrix. As in the case of the original model, the transition matrix should 
consist of blocks of nonzero and zero elements. However, the diagonal 
elements here will vanish because the system is forced to change state at 
every time step. For example, the modified, forced transition matrix for the 
chain of size L = 6 is 

I 0 1/3 1/3 1/3 i / 
1/2 0 0 0 1 2 

Tj= 1 0 0 0 

o /  0 1/2 0 1/2 

(15) 

The block form is due to transitions between ensembles of states. Notice 
that the blocks which contain the diagonal elements are always zero. The 
matrix Tf is still stochastic, although no longer doubly stochastic. The 
Frobenius theorem predicts that this matrix also possesses a maximum 
eigenvalue equal to 1. However, for matrices that have the above block 
form the eigenvalues appear always in pairs; if 2 is an eigenvalue of the 
matrix Tf, then - 2  is also an eigenvalue. Indeed, let A be the eigenvector 
that corresponds to the eigenvalue 2. The eigenvector A takes the form 

(i) A = (16) 

where the A, B, C, D ..... correspond to the blocks of the matrix Tf arranged 
according to alternating parity in the number of A particles. Now, consider 
the vector 

A' = (17) 

in which the vectors A, B, C, D ...... occur with alternating sign. By applying 
the matrix Tf (which has itself a block form corresponding to the vectors 
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A, B, C, D,...) on the vector A', it is easy to see that A' is an eigenvector 
of the matrix Tf with an eigenvalue 

7)A'= -,~A' (18) 

This proves that the eigenvalues of the matrix Ty come always in pairs _+)~. 
This result, together with the stochasticity of Tf, permits us to conclude 
that the value - 1 is also an eigenvalue of the transition matrix. Thus the 
modified trimolecular model presents an oscillatory asymptotic state with 
period 2. 

Another feature of the matrices Tf(L) is that they always have real 
eigenvalues. Indeed, it can be shown that there always exists a similarity 
transformation which turns the above matrices into symmetric matrices. 
Furthermore, as we saw earlier, the trace of the matrices Tr(L ) is always 
zero. This, together with the property of pairing eigenvalues, warrants a 
zero determinant for all the systems that have an odd number of allowed 
states. 

We note here that oscillations of the same type are seen in a one- 
dimensional nearest-neighbor random walk with a similar transition law 
and reflecting boundary conditions. Consider a random walker who can 
take either one step to the right with probability Pi or one step to the left 
with probability qi at time step i, so that pi + qi = 1. The transition matrix 
for this type of process will have a form similar to that of Eq. (15), namely 

(i 0 0'''0 i) P2 0 q2 0 - - -  0 

TRW = P3 0 q3 . . .  0 

0 0 .-- 0 1 

(19) 

With the same reasoning given for the matrix Ty, the matrix TRW will also 
have an oscillatory asymptotic state. The other properties of TI(L ), such as 
the vanishing of the trace and eigenvalues occurring in pairs and having 
real values, hold also for the matrices TRW. 

4. THE B IMOLECULAR REACTION MODEL A+X~.~-2X 

We now consider the bimolecular reaction model in one dimension 

A + X .  kl. 2X (20) 
k2 
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The question that we would like to discuss is whether this bimolecular 
model shows mean-field behavior or instead admits a nonequilibrium 
frozen state in low dimensions. The more general question that we would 
like to address is whether the low-dimensional behavior is the same in all 
chemical reactions or whether every individual chemical reaction shows its 
own behavior. 

For  the evolution of the bimolecular reaction model (20) we follow a 
similar algorithm as in the trimolecular model. We start with a one- 
dimensional lattice of size L. As initial condition we consider a uniform 
configuration containing only X particles. At every time step (a) a site is 
chosen at random in the lattice and (b) if there is an X particle either on 
the left or on the right of the chosen site, then the chosen site changes its 
color. 

Using the above-described algorithm we calculated numerically the 
ratio r = ( A ) / ( X )  as a function of time. Our results are shown in Fig. 3. 
We note that as time goes to infinity this quantity attains its mean-field 
value rt ~ co = r M v  = 1. In the bimolecular reaction model initial conditions 
have minor effects in the formation of the steady state. Unlike the tri- 
molecular model, the bimolecular one attains the same value of the ratio 
r even if we start from an initial state which contains any nonzero number  
of particles X. The only frozen configuration in the bimolecular model is 
thus the one which initially contains only A particles. All the other 
configurations are permitted and all of them, when used as initial configua- 
tions, will evolve to a final configuration such that r ,  ~ o~ = 1. 

1.2 L ....... I ........ I ........ I ........ I . . . .  I ........ I ,,,,,,i 

1 I " ' .  T 
0.8 

0.6 

0.4 T 
k 

0.2~ 

0 ' " " 

1 1 0 0 1 0 4 1 0 6 t 

Fig. 3. Numerical  simulation of the chemical reaction A + X  ~ - 2 X  in one dimension, 
without diffusion. As time increases, the ratio r = ~ A ) / ( X )  approaches an asymptotic value 
of r =  1 4-0.1, which is in agreement with the mean-field results. The lattice size used in the 
simulations was L =  1000 and the same result was obtained starting with different initial 
concentrations of particles A and X. 
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'This mean-field-type behavior of the bimolecular model in one dimen- 
sion is easy to explain. Any initial cluster of A particles can be "eaten up" 
by the X particles which form the boundaries of the cluster. Since any 
configuration is allowed (except the uniform A configuration), the number 
of ways we can put n particles A on the lattice is equal to the number of 
ways we can put n particles X on the lattice. Namely, both of them are 
equal to (~). Consequently, the ratio r is 

L--1 1 
Z , = o n ( ~ )  _ 1  - - = 1 ,  L - - , ~  (21) 

r , . ~ -  L m L 2 L 1 
2m=0 (m) 

It is now clear that the bimolecular model shows mean-field behavior 
even in one dimension, at least as far as the steady-state properties are 
concerned. Comparison between the two reaction models that we have 
considered show that the critical dimension dc is not universal in 
chemical reactions but depends on the particular model. For the bimolecular 
model d C = 1, whereas for the trimolecular model dc > 1. 

5. G E N E R A L  INIT IAL C O N D I T I O N S  

We have seen that the ergodicity properties are very different in the 
two reaction models examined here. The bimolecular system A + X ~ 2X 
studied in Section 4 is ergodic over all the state space except for the state 
which consists entirely of A particles. This unique configuration is frozen 
and cannot be reached from any other configuration with the Markovian 
evolution rules adopted. In the classification of states familiar from Markov 
chains the state consisting entirely of A particles would qualify as a closed 
class consisting of a single absorbing state. 

For  the trimolecular model the anomalous ergodicity effect is 
magnified. As we have already mentioned, all the clusters larger than one 
site and entirely made out of A particles will remain frozen on the lattice, 
while regions between such clusters will evolve according to the results 
given in Section 2. So for the trimolecular model the state space is divided 
into many closed subspaces which do not communicated with each other. 

The division of the state space into subspaces in the trimolecular 
model leads to different steady-state ratios r in each one of these subspaces. 
We have already found, in Section 2, the steady-state ratio r corresponding 
to the subspace containing the uniform X configuration. L e t  us now 
consider the most general random initial condition, of a chain of size L 
containing initially particles A with probability p and particles X with 
probability q =  ( l - p ) .  For  such a chain the probability to find an A 
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particle at the asymptotic state consists of two contributions: (a) the prob- 
ability that the chosen particle belongs to one of the initial frozen A 
clusters, PI;  and (b) the probability that the chosen particle belongs to one 
of the nonfrozen, active clusters which contribute to the evolution, Pa. 

The probability Pf(s) that any particle belongs to a frozen cluster of 
size s is equal to pr(s)= spS(1 _p)2, where the factor (1 _p)2 is needed to 
make sure that the cluster of A particles is interrupted by X particles at 
both ends. ~7) Now the total probability Pf is 

Pf= ~ sPf(s)= ~ sp~(1--p)2=p--p(1--p) 2 (22) 
s = 2  s = 2  

In other words, the probability that a particle belongs to a frozen cluster 
is equal to the total probability of finding an A particle in the entire chain, 
minus the probability to find an isolated A particle cluster. 

To find the probability for a particle to belong to an active cluster, one 
starts with a one-site nonfrozen cluster which contains an X particle and 
increases its length by adding either an A particle with probability p or an 
X particle with probability q. Equivalently, starting from a one-site cluster 
which which contains an A particle, one can increase its length only by 
adding an X particle with probability q. So if one wants to construct a 
cluster of length s starting from an initial X particle, it suffices to apply the 
transition matrix 

:) 
( s - l )  times on the initial state given by the column array (~). The 
resulting column array, after we apply the r matrix a number of times, will 
contain two elements: (a) the first element, (1, 1), will correspond to the 
probability of a cluster starting and ending with an X particle, while (b) the 
(2, 1) element will correspond to a cluster starting with an X particle and 
ending with an A particle. Since by construction the active clusters need to 
start and end with X particles, the probability to find such a cluster will be 
equal to the (1, 1) element of the resulting column array, in a rigorous 
from we can write 

So the probability to find an active cluster of size s which starts and ends 
with X particles is 

q 
Q, = (q2 + 4pq)U2 [-~'+ - 2s ] (24) 
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where 2_+ are the eigenvalues of the r matrix 

2 + = �89 [q + (q2 + 4pq),/2 ] (25) 

For  a nonfrozen cluster containing a total of 1 particles a percentage 
r~ = (A) l / l  of them will turn into A particles, where r~ depends on the 
cluster size l. In particular, the values of r~, l =  1, 2,.., can be found from 
the corresponding values of the ratio of A to X particles discussed in 
Section 2. We give here the first few values: r'o=r/z=r'2=O, /3 = r 4 =  1/6, 
5=1/5,  r ;=5 /24 ,  and r ' = r / ( l + r ) = ( 5 - x / 5 ) / l O = 0 . 2 7 6  .... Alter- 

natively, we can express r' s in terms of the generating function Q, as 

r l[ /Qsl  26, 
s - 2s p = q = 1/2 

Consequently, the total probability to find an A particle at the final state 
starting from an initial random configuration in the limit of infinite system 
size, L ~ 0% is 

pA = ( A ) / L = P z + P a  
L 

= p - ( 1 - p ) 2 p +  lira ~ rssQsp, 4, 
L ~ o o  s = l  

p r 0 (27) 

Here the factor p4 in the last term of Eq. (27) assures that every nonfrozen 
region is bounded by four A particles, two on either side. By substituting 
Eqs. (25) and (26) into Eq. (27) we find the asymptotic density of A 
particles as 

p4 [ pA=2pZ- -p3+~  Zl - -~+ 

where 

cos+- l + co~ , 

co+ - c o ' _  
q 2" (q2 +-4pq)1/21 ()~+ - ) 

(28) 

1 + x/5 (29) co+ 4 

In the limit of p = 1 (only A particles initially on the lattice), the 
second and third terms on the right-hand side of Eq. (27) vanish. So the 
probability to find an A particle in the steady state is equal to PA = P = 1, 
as expected. 
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In the limit of p --+ 0 we set p = e and q = 1 - e and we expand Eq. (28) 
in terms of e. In the limit of e--+ 0 we have 

l i m p A = X / 5  1 5 - - X ~  = = r "  ( 3 0 )  
p~o 10 ~o+ 10 

in agreement with our numerical simulations and the analytical results 
obtained in Section 2. 

6. D ISCUSSION 

6.1. Di f fusion Effects 

It is rather interesting that the effects of diffusion are not very marked 
in the case of one-dimensional reactions. For  example, in the trimolecular 
model, clusters of A particles with vacancies will not be destroyed. They 
can expand or shrink, but certainly cannot spontaneously create X 
particles, since, as before, the creation of an X particle requires the presence 
of other X particles in the neighborhood. Clusters of X particles with 
vacancies will create spontaneously A particles as before. The presence of 
vacancies is expected to slow down the approach toward the steady state, 
but is not expected to change much the essential features of the process, 
such as the appearance of nonequilibrium frozen states. 

Consider the one-dimensional trimolecular model on a lattice of size L 
containing V vacancies and L -  V particles. Let us further suppose that we 
start from the particular configuration which contains only X particles and 
vacancies placed in such a way that the first ( L -  V) sites are occupied by 
X particles and the remaining V sites are the vacant sites. The initial con- 
figuration will give rise to other configurations via the evolution rules 
explained in Section 2. The diffusion effect will result in splitting each one 
of these configurations into (~) copies. In each of these copies the numbers 
of particles of A and X and of vacancies will be constant. So the ratio r of 
particles A to particles X at the steady state is not expected to change. If 
we denote again by ML(n) the number of ways we can put n particles of 
type A into a chain of size L with V vacancies, then 

[ ( L - -  V- -  1 ) / 2 ]  / [ ( L  V-- 1) /2 ]  

r y= E .vL(.)/ Z vL(.) 
n = 0  n = 0 

. ,,,., 

= ~, nML_ v(n) Z ML_ v(n) (31) 
n = 0  n = O  
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In the case of L ~  ~ and V--* 0% with L/V=finite, the value of .d~ is rA 
equal to the value of ra,  without diffusion. 

In Fig. 4 we present results from a numerical simulation of the 
trimolecular reaction-diffusion model using the following algorithm: (a) 
start with an initial configuration of only X particles with a percentage v % 
of vacancies distributed randomly in between; (b) at every time step choose 
at random one site on the lattice; (c) decide at random if the particle on 
the chosen site will react or diffuse; (d) if in step (c) diffusion has been 
selected, the chosen particle will perform a nearest-neighbor random walk 
either to the left or to the right; if the nearest neighbors are occupied, the 
particle will remain on the current site; (e) if in step (c) reaction has been 
selected, then the chosen particle will change color if both nearest 
neighbors have color X; otherwise the chosen particle will retain the same 
color; (f) one time step is terminated and the algorithm restarts from 
step (b). 

As seen in Fig. 4, the ratio r ai~ of A to X particles approaches a value 
in the region of 0.38-t-0.03 in the long-time limit comparable with Fig. 2 
corresponding to the nondiffusive case. 

It should be added that oscillating solutions do not exist if diffusion is 
included in the model. Even if the system is forced to leave its current state 
at every time step, diffusion can lead the system into a state with the same 
number of particles A and X as in the original state. Consequently, the 
blocks containing the diagonal elements of the transition matrix are not 
identically zero and the eigenvalues of the determinant do not appear in 
pairs. 

A feature that has played an important role in our models is the 
assumption of hard-core interactions between the particles. If the diffusion 

0 . 5  q--~-, ..... 

0 . 4  

~: 0 . 3  
v 

.,, 0 . 2  

0.1 

........ I ....... ...... ~ ...... i ~ , ~  

" " " l  

i _ 

o ~ ........ I ...... I" '"'i'"'l . . . . . . .  I ........ ' ...... I "  ' ' ~  
1 1 0 0 1 0 4 1 0 6 t 

Fig. 4. Numerical simulation of the reaction-diffusion process A+2X.-~-~ 3X in one 
dimension. The lattice size is L = 21~ and it contains 40 % vacant sites. The asymptotic value 
of the ratio r is in the same region as in nondiffusive case (see Fig. 2). 

822/70/5-6-9 
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process allows particles to go through each other, then mean-field results 
are obtained in all dimensions. (8~ The reason for mean-field behavior is that 
clusters of A particles can be created or destroyed due to the diffusion of 
A particles through X regions. 

6.2. M u l t i m o l e c u l a r  React ions and React ions in H igher  
D imensions  

Consider the nearest-neighbor multimolecular reaction model of the 
form 

A + j X @ ( j +  1)X, j = 1, 2 .... (32) 

We expect that the critical dimension will depend on the value of j com- 
pared to the number of nearest neighbors. The latter is a function of the 
spatial dimension as well as of the lattice type (square lattice, triangular, 
octagonal, etc.). It is clear that when the number of nearest neighbors n n  

is less than j, the model is not well defined. When the number of nearest 
neighbors n n  = j ,  as in the trimolecular reaction model in one dimension, 
then spatial elects play an important  role and prohibit the appearance of 
mean-field behavior. Behavior different from mean field should appear in 
lattice types in which the number of nearesty neighbors is high enough so 
that the model can be well defined, but still low enough so that frozen 
regions could exist. For  the square lattice, the number of nearest neighbors 
in d dimensions is 2d. When 2 d <  j the nearest-neighbor interaction model 
is not well defined. For  j =  d we have the critical dimension and for 

1 . 2  . . . . . . . . . . . . . . . . .  , . . . .  . . . . .  

04 I i 
0.2-  

0 -  
1 1 O0 1 0 4 1 0 6 t 

Fig. 5. Numerical simulation of the reaction A + 2X ~- 3X in two dimensions. The square 
lattice used has size 2 5 x2 5. In the long-time limit the ratio r= ( A ) / ( X )  approaches the 
mean-field value r = 1. 
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d~> dc = j  the system shows mean-f ield behavior .  In  the in te rmedia te  region,  

d < j ~< 2d, the system presents  non-mean-f ie ld  behavior ,  as we have seen in 
the t r imolecu la r  nea res t -ne ighbor  reac t ion  mode l  in one dimension.  

To confi rm our  conclus ions  a b o u t  the behav io r  of the mul t imolecu la r  
mode l  in higher  d imensions ,  we per formed  numer ica l  s imula t ions  of the 
t r imolecu la r  reac t ion  mode l  in a two-d imens iona l  square  lattice. In  
F igure  5 we plot  the ra t io  r of  A to X part icles  as a function of time. 
F igure  5 shows that  as t ime increases, the ra t io  r reaches the value 1, which 
is the mean-f ield value. As expected,  diffusion does  not  a l ter  the mean-field 
results in two-dimensions .  
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